
Chapter 2

Restricting and Sorting Data

1

Objectives
After completing this lesson, you should
be able to do the following:
•Limit the rows retrieved by a query
•Sort the rows retrieved by a query

Lesson Aim

Introduction to Oracle: SQL and PL/SQL 2-2

2

Limiting Rows Using a Selection

SELECT *
FROM emp;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7369 SMITH CLERK 7902 17/12/1980 800 20
7499 ALLEN SALESMAN 7698 20/02/1981 1600 300 30
7521 WARD SALESMAN 7698 22/02/1981 1250 500 30
7566 JONES MANAGER 7839 02/04/1981 2975 20
7654 MARTIN SALESMAN 7698 28/09/1981 1250 1400 30
7698 BLAKE MANAGER 7839 01/05/1981 2850 30
7782 CLARK MANAGER 7839 09/06/1981 2450 10
7788 SCOTT ANALYST 7566 09/12/1982 3000 20
7839 KING PRESIDENT 17/11/1981 5000 10
7844 TURNER SALESMAN 7698 08/09/1981 1500 0 30
7876 ADAMS CLERK 7788 12/01/1983 1100 20
7900 JAMES CLERK 7698 03/12/1981 950 30
7902 FORD ANALYST 7566 03/12/1981 3000 20
7934 MILLER CLERK 7782 23/01/1982 1300 10

14 rows selected.

SELECT *
FROM emp
WHERE deptno=10;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7782 CLARK MANAGER 7839 09/06/1981 2450 10
7839 KING PRESIDENT 17/11/1981 5000 10
7934 MILLER CLERK 7782 23/01/1982 1300 10

Limiting Rows Using a Selection

In the example on the slide, assume that you want to display
all the employees in department 10. The highlighted set of rows
with a value of 10 in DEPTNO column are the only ones returned
of restriction is the basis of the WHERE clause in SQL.

Introduction to Oracle: SQL and PL/SQL 2-3

3

Limiting Rows Selected

Restrict the rows returned by using the WHERE clause.

SELECT [DISTINCT] {*| column [alias], ...}

FROM table

WHERE condition ;

• The WHERE clause follows the FROM clause

Limiting Rows Selected

You can restrict the rows returned from the query by using the WHERE clause.

A WHERE clause contains a condition that must be met, and it directly follows

the FROM clause.

In the syntax:

WHERE restricts the query to rows that meet a condition

condition is composed of column names, expressions, constants, and a

comparison operator

The WHERE clause can compare values in columns, literal values, arithmetic

expressions, or functions. The WHERE clause consists of three elements:

•Column name

•Comparison operator

•Column name, constant, or list of values

4

Using the WHERE Clause

SQL> SELECT ename , job, deptno

 FROM emp

 WHERE job = 'CLERK'

ENAME JOB DEPTNO
JAMES CLERK

SMITH CLERK

ADAMS CLERK

MILLER CLERK

30

20

20

10

Using the WHERE clause

In the example, the SELECT statement retrieves the name, job title,

and department number of all employees whose job title is

CLERK.

Note that the job title CLERK has been specified in uppercase to

ensure that the match is made with the job column in the EMP

table. Character strings are case sensitive.

5

Character Strings and Dates

•Character strings and date values are
enclosed in single quotation marks.

•Character values are case sensitive and
date values are format sensitive.

•The default date format is DD-MON-YY.

SQL> SELECT ename, job, deptno
FROMemp
WHERE ename = 'JAMES';

Character Strings and Dates

Character strings and dates in the WHERE clause must be enclosed in single quotation marks (' ').

Number constants, however, should not.

All character searches are case sensitive. In the following example, no rows are returned because the

EMP table stores all the data in uppercase:

SQL> SELECT ename, empno, job, deptno
FROM emp
WHERE job='clerk';

Oracle stores dates in an internal numeric format, representing the century, year, month, day, hours,

minutes, and seconds. The default date display is DD-MON-YY.

Note: Changing default date format will be covered in Lesson 3. Number values are not enclosed

within quotation marks.

6

Comparison Operators

Operator Meaning
= Equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
<> Not equal to

Comparison Operators

Comparison operators are used in conditions that compare one expression to another.

They are used in the WHERE clause in the following format:

Syntax

... WHERE expr operator value

Examples
... WHERE hiredate='01-JAN-95'
... WHERE sal>=1500
... WHERE ename='SMITH'

7

Using the Comparison Operators

SQL> SELECT ename, sal, comm
FROM emp
WHERE sal<=comm;

ENAME SAL COMM
MARTIN 1250 1400

Using the Comparison Operators

In the example, the SELECT statement retrieves name, salary, and

commission from the EMP table, where the employee salary is less than or

equal to the commission amount. Note that there is no explicit value

supplied to the WHERE clause. The two values being compared are taken

from the SAL and COMM columns in the EMP table.

8

Other Comparison Operators

Operator Meaning
BETWEEN ...AND... Between two values (inclusive)
IN(list) Match any of a list of values
LIKE Match a character pattern
IS NULL Is a null value

Using the BETWEEN Operator
Use the BETWEEN operator to display rows based on a range
of values.

SELECT ename, sal, comm
 FROM emp
 WHERE sal BETWEEN 1000 AND 1500 ;

ENAME SAL COMM
WARD 1250 500
MARTIN 1250 1400
TURNER 1500 0
ADAMS 1100
MILLER 1300

The BETWEEN Operator

You can display rows based on a range of values using the

BETWEEN operator. The range that you specify contains a lower

range and an upper range.

The SELECT statement on the slide returns rows from the EMP

table for any employee whose salary is between $1000 and $1500.

Values specified with the BETWEEN operator are inclusive. You

must specify the lower limit first.

Using the IN Operator
Use the IN operator to test for values in a list

SQL> SELECT empno, ename, sal, mgr
FROM emp

 WHERE mgr IN (7902, 7566, 7788);

EMPNO ENAME SAL MGR
7369 SMITH 800 7902
7788 SCOTT 3000 7566
7876 ADAMS 1100 7788
7902 FORD 3000 7566

The IN Operator

To test for values in a specified list, use the IN operator.

The slide example displays employee number, name, salary, and manager's employee

number of all the employees whose manager's employee number is 7902. 7566. or

7788,

The IN operator can be used with any datatype. The following example returns a row

from the EMP table for any employee whose name is included in the list of names in

the WHERE clause:

SQL> SELECT empno, ename, mgr, deptno
2FROM emp
3WHERE ename IN ('FORD' , 'ALLEN') ;

If characters or dates are used in the list, they must be enclosed in single quotation

marks (' ')-

Using the LIKE Operator
Use the LIKE operator to perform wildcard searches of valid
search string values.
Search conditions can contain either literal characters or
numbers.
1. % denotes zero or many characters, denotes one character.
2. _ denotes one character.

SQL> SELECT ename
2FROM emp
3WHERE ename LIKE ‘_C%’;

The LIKE Operator

You may not always know the exact value to search for. You can select rows that match a

character pattern by using the LIKE operator. The character pattern-matching operation is

referred to as a wildcard search. Two svmbols can be used to construct the search string.

Symbol Description
% Represents any sequence of zero or more characters

_ Represents any single character

The SELECT statement above returns the employee name from the EMP table for any

employee whose name begins with an "S”. Note the uppercase "S" . Names beginning with

an "s” will not be returned.

The LIKE operator can be used as a shortcut for some BETWEEN comparisons. The

following example displays names and hire dates of all employees who joined between

January 1981 and December 1981:

SQL> SELECT hiredate

2FROM emp
3WHERE hiredate LIKE '%81' ;

Using the LIKE Operator

You can combine pattern-matching characters.

SQL> SELECT ename

4FROM emp
5WHERE ename LIKE 'A%' ;

ENAME

MARTIN
JAMES
WARD

You can use the ESCAPE identifier to search for "%" or "_”.

Combining Wildcard Characters

The % and _ symbols can be used in any combination with literal characters. The

example on the slide displays the names of all employees whose name has an "A'" as

the second character.

The ESCAPE Option

When you need to have an exact match for the actual '%' and '_' characters, use the

ESCAPE option. This option specifies what the ESCAPE character is. To display the

names of employees whose name contains ‘A_B\’ use the following SQL statement:

SQL> SELECT ename
2FROM emp
3WHERE ename LIKE '%A_B%' ESCAPE '\' ;

The ESCAPE option identifies the backslash (\) as the escape character. In the pattern,

the escape character precedes the underscore (_). This causes the Oracle Server to

interpret the underscore literally.

Using the IS NULL Operator

Test for null values with the IS NULL operator.
SQL> SELECT ename, mgr

2FROM emp
3WHERE mgr IS NULL;

ENAME
KING MGR

The IS NULL Operator

The IS NULL operator tests for values that are null. A null value means the value is unavailable,

unassigned, unknown, or inapplicable. Therefore, you cannot test with (=) because a null value cannot be

equal or unequal to any value. The slide example retrieves the name and manager of all employees who do

not have a manager.

For example, to display name Job title, and commission for all employees who are not entitled to get a

commission, use the following SQL statement.

SELECT ename, job
FROM emp
WHERE comm IS NULL;

ENAME JOB
SMITH CLERK
JONES MANAGER
BLAKE MANAGER
CLARK MANAGER
SCOTT ANALYST
KING PRESIDENT
ADAMS CLERK
JAMES CLERK
FORD ANALYST
MILLER CLERK

10 rows selected.

Logical Operators
Operator Meaning
AND Returns TRUE if both component conditions are TRUE
OR Returns TRUE if either component condition is TRUE
NOT Returns TRUE if the following condition is FALSE

Logical Operators

A logical operator combines the result of two component conditions to

produce a single result based on them or to invert the result of a single

condition. Three logical operators are available in SQL:

•AND

•OR

•NOT

All the examples so far have specified only one condition in the WHERE

clause. You can use several conditions in one WHERE clause using the AND

and OR operators.

Using the AND Operator
AND requires both conditions to be TRUE

SQL> SELECT empno, ename,
job, sal

FROM emp
WHERE sal >= 1100
AND job= 'CLERK' ;

EMPNO ENAME JOB SAL
7876 ADAMS CLERK 1100
7934 MILLER CLERK 1300

The AND Operator

In the example, both conditions must be true for any

record to be selected. Therefore, an employee who has a

job title of CLERK and earns more than $1100 will be

selected.

All character searches are case sensitive. No rows are

returned if CLERK is not in uppercase. I Character

strings must be enclosed in quotation marks.

AND Truth Table

The following table shows the results of combining two

expressions with AND:

AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOW

N
FALSE UNKNOWN

Using the OR Operator
OR requires either condition to be TRUE

SQL> SELECT empno, ename, job, sal
 FROM emp
 WHERE sal >= 1100
 OR job = 'CLERK' ;

EMPNO ENAME JOB SAL
7369 SMITH CLERK 800
7499 ALLEN SALESMAN 1600
7521 WARD SALESMAN 1250
7566 JONES MANAGER 2975
7654 MARTIN SALESMAN 1250
7698 BLAKE MANAGER 2850
7782 CLARK MANAGER 2450
7788 SCOTT ANALYST 3000
7839 KING PRESIDENT 5000
7844 TURNER SALESMAN 1500
7876 ADAMS CLERK 1100
7900 JAMES CLERK 950
7902 FORD ANALYST 3000
7934 MILLER CLERK 1300

14 rows selected.

The OR Operator

In the example, either condition can be true for any record to be selected. Therefore,

an employee who has a job title of CLERK or earns more than $1100 will be

selected.

The OR Truth Table
The following table shows the results of combining two expressions with OR:

OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
Using the NOT Operator

SQL> SELECT ename, job

FROM emp

WHERE job NOT IN ('CLERK', 'MANAGER' , 'ANALYST') ;

ENAME JOB
ALLEN SALESMAN
WARD SALESMAN
MARTIN SALESMAN
KING PRESIDENT
TURNER SALESMAN

The NOT Operator

The slide example displays name and job title of all the employees whose job title is not

CLERK. MANAGER, or ANALYST.

The NOT Truth Table

The following table shows the result of applying the NOT operator to a condition:

NOT TRUE FALSE UNKNOWN
FALSE TRUE UNKNOWN

Note: The NOT operator can also be used with other SQL operators, such as BETWEEN,
LIKE, and
NULL.

... WHERE NOT job IN (' CLERK', 'ANALYST')

... WHERE sal NOT BETWEEN 1000 AND 1500

... WHERE ename NOT LIKE '%A%'

Rules of Precedence

Order Evaluated Operator

1 All comparison operators

2 NOT

3 AND

4 OR

Override rules of precedence by using parentheses.

Rules of Precedence

SELECT ename, job, sal
 FROM emp
 WHERE job = 'SALESMAN' OR job = 'PRESIDENT ' ;

ENAME JOB SAL
ALLEN SALESMAN 1600
WARD SALESMAN 1250
MARTIN SALESMAN 1250
TURNER SALESMAN 1500

Example of Precedence of AND Operator

In the slide example, there are two conditions:

The first condition is that job is PRESIDENT and salary is greater than 1500.

The second condition is that job is SALESMAN. Therefore, the SELECT

statement reads as follows:

"Select the row if an employee is a PRESIDENT and earns more than $1500

or if the employee is a SALESMAN"

Rules of Precedence

The parentheses to force priority
SELECT ename, job, sal

FROM emp

WHERE (job = 'SALESMAN' OR job= ' PRESIDENT ')

AND sal >1500;

ENAME JOB SAL
ALLEN SALESMAN 1600

Using Parentheses

In the example, there are two conditions: • The first condition is that job is

PRESIDENT or SALESMAN.

The second condition is that salay is greater than 1500. Therefore, the

SELECT statement reads as follows:

"Select the row if an employee is a PRESIDENT or a SALESMAN and if

the employee earns more than $1500."

ORDER BY Clause
• Sort rows with the ORDER BY clause

- ASC: ascending order, default
- DESC: descending order

• The ORDER BY clause comes last in the SELECT statement.

SQL> SELECT ename , job, deptno, hiredate
 FROM emp
 ORDER BY hiredate;

ENAME JOB DEPTNO HIREDATE
SMITH CLERK 20 17/12/1980
ALLEN SALESMAN 30 20/02/1981
WARD SALESMAN 30 22/02/1981
JONES MANAGER 20 02/04/1981
BLAKE MANAGER 30 01/05/1981
CLARK MANAGER 10 09/06/1981
TURNER SALESMAN 30 08/09/1981
MARTIN SALESMAN 30 28/09/1981
KING PRESIDENT 10 17/11/1981
JAMES CLERK 30 03/12/1981
FORD ANALYST 20 03/12/1981
MILLER CLERK 10 23/01/1982
SCOTT ANALYST 20 09/12/1982
ADAMS CLERK 20 12/01/1983

14 rows selected.

The ORDER BY Clause

The order of rows returned in a query result is undefined. The ORDER BY

clause can be used to sort the rows. If you use the ORDER BY clause, you

must place last. You can specify an expression or an alias to sort.

Syntax

SELECT expr

FROM table

[WHERE condition(s)]

[ORDER BY {column, expr} [ASC | DESC]];

where:

ORDER BY specifies the order in which the retrieved rows are displayed

ASC orders the rows in ascending order (this is the default order)

DESC orders the rows in descending order

If the ORDER BY clause isnot used, the sort order is
undefined, and the oracle server may not fetch rows
in the same order for the same query twice. Use ORDER
BY clause to display the rows in a specified order.

Sorting in Descending Order

SELECT ename, job, deptno, hiredate
 FROM emp
 ORDER BY hiredate DESC;

ENAME JOB DEPTNO HIREDATE
ADAMS CLERK 20 12/01/1983
SCOTT ANALYST 20 09/12/1982
MILLER CLERK 10 23/01/1982
FORD ANALYST 20 03/12/1981
JAMES CLERK 30 03/12/1981
KING PRESIDENT 10 17/11/1981
MARTIN SALESMAN 30 28/09/1981
TURNER SALESMAN 30 08/09/1981
CLARK MANAGER 10 09/06/1981
BLAKE MANAGER 30 01/05/1981
JONES MANAGER 20 02/04/1981
WARD SALESMAN 30 22/02/1981
ALLEN SALESMAN 30 20/02/1981
SMITH CLERK 20 17/12/1980

14 rows selected.

Default Ordering of Data

The default sort order is ascending:

• Numeric values are displayed with the lowest values first

o —for example, 1-999.

• Date values are displayed with the earliest value first

o —for example: 0l-JAN-92 before 0l-JAN-95.

• Character values are displayed in alphabetical order

o —for example: A first and Z last.

• Null values are displayed last for ascending sequences and first for

descending sequences.

Reversing the Default Order

To reverse the order in which rows are displayed, specify the keyword DESC

after the column name in the ORDER BY clause. The slide example sorts

the result by the most recently hired employee.

Sorting by Column Alias

SQL> SELECT empno, ename, sal*12 "annsal"
 FROM emp
 ORDER BY "annsal";

EMPNO ENAME annsal
7369 SMITH 9600
7900 JAMES 11400
7876 ADAMS 13200
7521 WARD 15000
7654 MARTIN 15000
7934 MILLER 15600
7844 TURNER 18000
7499 ALLEN 19200
7782 CLARK 29400
7698 BLAKE 34200
7566 JONES 35700
7788 SCOTT 36000
7902 FORD 36000
7839 KING 60000

14 rows selected.

Sorting By Column Aliases

You can use a column alias in the ORDER BY clause. The slide example sorts

the data by annual salary.

Sorting by Multiple Columns
• The order of ORDER BY list is the order of sort

SELECT ename, deptno, sal
 FROM emp
 ORDER BY deptno, sal DESC;

ENAME DEPTNO SAL
KING 10 5000
CLARK 10 2450
MILLER 10 1300
SCOTT 20 3000
FORD 20 3000
JONES 20 2975
ADAMS 20 1100
SMITH 20 800
BLAKE 30 2850
ALLEN 30 1600
TURNER 30 1500
MARTIN 30 1250
WARD 30 1250
JAMES 30 950

14 rows selected.

You can sort by a column that is not in the SELECT list.
Sorting by Multiple Columns
You can sort query results by more than one column. The sort limit is the number of columns in
the given table.

In the ORDER BY clause, specify the columns, and separate the column names using commas.
If you want to reverse the order of a column, specify DESC after its name. You can order by
columns that are not included in the SELECT clause.

Example
Display name and salary of all employees. Order the result by department number and then
descending order by salary.

SQL> SELECT ename, sal
FROM emp
ORDER BY deptno, sal DESC;

Summary
SELECT [DISTINCT] {*| column [alias], ...}
FROM table

[WHERE condition(s)]

[ORDER BY {column, expr, alias} [ASC|DESC]];

Summary

In this lesson, you have learned about restricting and sorting rows returned by the

SELECT statement. You have also learned how to implement various operators.

Practice Overview

Selecting data and changing the order of rows displayed
Restricting rows by using the WHERE clause
Using the double quotation marks in column aliases

Practice Overview

This practice gives you a variety of exercises using the WHERE clause and the

ORDER BY clause.

Practice 2
1. Create a query to display the name and salary of employees earning more

than $2850. Save your SQL statement to a file named p2ql.sql. Run your
query.

ENAME SAL
JONES 2975
SCOTT 3000
KING 5000
FORD 3000

2. Create a query to display the employee name and department number for

employee number 7566.

ENAME DEPTNO
JONES 20

3. Modify p2ql.sql to display the name and salary for all employees whose

salary is not in the range of $1500 and $2850. Resave your SQL statement

to a file named p2q3.sql. Rerun your query.

ENAME SAL
SMITH 800
WARD 1250
JONES 2975
MARTIN 1250
SCOTT 3000
KING 5000
ADAMS 1100
JAMES 950
FORD 3000
MILLER 1300

10 rows selected.

Practice 2 (continued)

4. Display the employee name. job. and start date of employees hired between

February 20. 1981, and May 1. 1981. Order the query in ascending order by

start date.

ENAME JOB HIREDATE
ALLEN SALESMAN 20/02/1981
WARD SALESMAN 22/02/1981
JONES MANAGER 02/04/1981
BLAKE MANAGER 01/05/1981

5. Display the employee name and department number of all employees in

departments 10 and 30 in alphabetical order by name.

ENAME DEPTNO
ALLEN 30
BLAKE 30
CLARK 10
JAMES 30
KING 10
MARTIN 30
MILLER 10
TURNER 30
WARD 30
9 rows selected

6. Modify p2q3.scj/to list the name and salary of employees who earn more than

$1500 and are in department 10 or 30. Label the columns Employee and Monthly

Salary, respectively. Resave your SQL statement to a file named p2q6.sql Rerun

your query.

Employee Monthly Salary
KING 5000
BLAKE 2850
CLARK 2450
ALLEN 1600

Practice 2 (continued)
7. Display the name and hire date of even- employee who was hired in 1982.

ENAME HIREDATE
SCOTT 09-DEC-82
MILLER 23-JAN-82

8. Display the name and job title of all employees who do not have a manager.

ENAME JOB

KING PRESIDENT

9. Display the name, salary, and commission for all employees who earn commissions. Sort

data in descending order of salary and commissions.

ENAME SAL COMM
ALLEN 1600 300"
TURNER 1500 0
MARTIN 1250 1400
WARD 1250 500

If you have time, complete the following exercises:

10. Display the names of all employees where the third letter of their name is an A.

ENAME

BLAKE
CLARK
ADAMS

11. Display the name of all employees who have two Ls in their name and are in department 30

or their manager is 7782.

ENAME
ALLEN
MILLER

Practice 2 (continued)

If you want extra challenge, complete the following exercises:

12. Display the name, job, and salary for all employees whose job is Clerk or

Analyst and their salary is not equal to $1000, $3000. or $5000.

ENAME JOB SAL

JAMES CLERK 950
SMITH CLERK 800
ADAMS CLERK 1100
MILLER CLERK 1300

13. Modify p2q6.sql to display the name, salary, and commission for all employees

whose commission amount is greater than their salary increased by 10%. Rerun

your query. Resave your query as p2q!3.sql.

Employee Monthly Salary COMM
MARTIN 1250 1400

