Objectives:

1. To evaluate the common-source amplifier using the small signal equivalent model.
2. To learn what affects the voltage gain.

Theory:

A self-biased n-channel JFET with an AC source capacitively coupled to the gate is shown in Figure 1-a. The resistor, R_G, serves for two purposes: it keeps the gate at approximately 0 V dc (because I_{GSS} is extremely small), and its large value (usually several megohms) prevents loading of the ac signal source. The bias voltage is created by the drop across R_S. The bypass capacitor, C_2, keeps the source of the FET effectively at ac ground.

The signal voltage causes the gate-to-source voltage to swing above and below its Q-point value, causing a swing in drain current. As the drain current increases, the voltage drop across R_D also increases, causing the drain voltage to decrease. The drain current swings above and below its Q-point value in-phase with the gate-to-source voltage. The drain-to-source voltage swings above and below its Q-point value 180° out-of-phase with the gate-to-source voltage, as illustrated Figure 1-b.

The operation just described for an n-channel JFET can be illustrated graphically on both the transfer characteristic curve and the drain characteristic curve in Figure 2. Figure 2-a shows how a sinusoidal variation, V_{gs}, produces a corresponding variation in I_d. As V_{gs} swings from the Q point to a more negative value, I_d decreases from its Q-point value. As V_{gs} swings to a less negative value, I_d increases. Figure 2-b shows a view of the same operation using the drain curves. The signal at the gate drives the drain current equally above and below the Q
point on the load line, as indicated by the arrows. Lines projected from the peaks of the gate voltage across to the I_D axis and down to the V_{DS} axis indicate the peak-to-peak variations of the drain current and drain-to-source voltage, as shown.

Small signal model of JFET is identical to that of the MOSFET in Figure 3. Here, g_m is given by

$$g_m = \frac{2 I_{DSS}}{|V_p|} \left(1 - \frac{V_{GS}}{V_p} \right)$$

or alternatively by

$$g_m = \frac{2 I_{DSS}}{|V_p|} \left(\frac{I_D}{I_{DSS}} \right)$$

where V_{GS} and I_D are the DC bias quantities, and

$$r_O = \frac{|V_A|}{I_D} \quad \text{and} \quad g_m \approx -2 \frac{I_{DSS}}{V_p}$$

At high frequencies, the equivalent circuit of Figure 4 applies with C_{gs} and C_{gd} being both depletion capacitances. Typically, $C_{gs}=1.3\pF$, $C_{gd}=0.1..0.5\pF$ and $f_t=20..100\ MHz$; and also there is a knowledge about the following:
\[AV = \frac{gm(R_D // R_L)}{(1 + gmR_S)} \quad \text{(normally)} \]
\[AV = \frac{gmR_d}{1 + gmR_S}, \quad R_d = \frac{R_D // R_L}{(RD // RL)} \]
\[I_D = 2 I_{DSS} \left[(R_{Sgmo} + 1) - (2R_{Sgmo} + 1)^{1/2} \right] / (R_{Sgmo})^2 \]

For the n-channel JFET current-voltage characteristics described as follows:

- **Cutoff**: \(V_{GS} \leq V_p, \quad i_D = 0 \)
- **Triode region**: \(V_p \leq V_{GS} \leq 0, \quad V_{DS} \leq V_{GS} - V_p \)
 \[i_D = I_{DSS} \left(2 \left(\frac{V_{GS}}{V_p} \right) \left(\frac{V_{DS}}{V_p} \right) - \left(\frac{V_{DS}}{V_p} \right)^2 \right) \]
- **Saturation region (pinch-off)**: \(V_p \leq V_{GS} \leq 0, \quad V_{DS} \geq V_{GS} - V_p \)
 \[i_D = I_{DSS} \left(\frac{V_{GS}}{V_p} \right)^2 (1 + \lambda V_{DS}) \]

\(\lambda \) is the inverse of the Early voltage; \(\lambda = 1/V_A \). \(V_A \) and \(\lambda \) are positive for n-channel devices.

Preliminary Work: *(Choose and solve at least one question in each part –A,B,C-)*

Please use the formulae above!

A. Find the values of \(I_D, \quad V_{GS} \quad \text{and} \quad V_{DS} \) and find \(g_m \) in the circuit of Figure 7 then fill the Table 1 in the report to compare the measured ones.

B. In following questions 1 to 4, let the n-channel JFET have \(V_p = -4V \) and \(I_{DSS} = 10mA \), and unless otherwise specified assume that in pinch-off (saturation) the output resistance is infinite.

1. For \(V_{GS} = -2V \), find the minimum \(V_{DS} \) for the device to operate in pinch-off. Calculate \(i_D \) for \(V_{GS} = -2V \) and \(V_{DS} = 3V \).

2. For \(V_{DS} = 3V \), find the change in \(i_D \) corresponding to a change in \(V_{GS} \) from \(-2\) to \(-1.6V\).

3. For small \(V_{DS} \), calculate the value of \(r_{DS} \) at \(V_{GS} = 0V \) and at \(V_{GS} = -3V \).

4. If \(V_A = 100V \), find the JFET output resistance \(r_O \) when operating in pinch-off at a current of 1 mA, 2.5 mA and 10 mA.

C. 1. The JFET in the circuit of Figure 5 has \(V_p = -3V, \quad I_{DSS} = 9mA \), and \(\lambda = 0 \). Find the values of all resistors so that \(V_G = 5V, \quad I_D = 4mA \), and \(V_D = 11V \). Design for 0.05 mA in the voltage divider.
2. For the JFET circuit designed in question 6, let an input signal v_i be capacitively coupled to the gate, a large bypass capacitor be connected between the source and ground, and the output signal v_O be taken from the drain through a large coupling capacitor. The resulting common-source amplifier is shown in Figure 6. Calculate g_m and r_O (assuming $V_A = 100V$). Also find $R_{in}, A_V = v_O/v_i$, and R_O.

Procedure:

1. Construct the circuit in Figure 7:
2. Measure the values of I_D, V_{GS} and V_{DS} and find g_m then fill the Table 1 in report part with your calculated values and compare the results.

3. With oscillator, obtain a 5 KHz signal with 0.5 Vpp and connect to the circuit as V_{in}, observe the V_{out} signal and find the voltage gain.

4. Measure the AC voltage at source point of FET as V_S and write some comments on this occurrence.

5. Reduce the R_L and find the voltage gain.

6. Reduce the bypass capacitor and find the voltage gain. (**Never ask “which capacitor?”**)

7. Draw all graphs for V_{in} and V_{out}, indicate the phase differences if they exist.

Equipment List:

- MPF102 FET transistor or equivalent
- DC power supply (15 V)
- Capacitors: 2*2.2 µF, 1*100 µF
- Resistors: 2*1 kΩ, 1*4.7 KΩ, 1*100 KΩ
- Oscilloscope

References:

- Microelectronic Circuits, Fourth Edition, Sedra&Smith, FET Small Signal Analysis
- Electronic Devices, Third Edition, Floyd, JFET Amplifiers
REPORT:

2.

TABLE 1

<table>
<thead>
<tr>
<th>parameter</th>
<th>measured</th>
<th>calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{GS}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DS}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. $A_V =$

4. ...
 ...
 ...
 ...

5. $A_V = (reduced \ R_L)$

6. $A_V = (reduced \ C_{bypass})$

Drawings for 3, 5, 6: (Draw in different colors for Vin and Vout)

(3) ———— (5) ————

(6) ————